Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes.
نویسندگان
چکیده
This paper presents a novel and mass-producible technique to fabricate indium-tin-oxide (ITO) nanorods which serve as an omnidirectional transparent conductive layer (TCL) for InGaN/GaN light emitting diodes (LEDs). The characteristic nanorods, prepared by oblique electron-beam evaporation in a nitrogen ambient, demonstrate high optical transmittance (T>90%) for the wavelength range of 450nm to 900nm. The light output power of a packaged InGaN/GaN LED with the incorporated nanorod layer is increased by 35.1% at an injection current of 350mA, compared to that of a conventional LED. Calculations based on a finite difference time domain (FDTD) method suggest that the extraction enhancement factor can be further improved by increasing the thickness of the nanorod layer, indicating great potential to enhance the luminous intensity of solid-state lighting devices using ITO nanorod structures.
منابع مشابه
III–Nitride-Based Microarray Light-Emitting Diodes with Enhanced Light Extraction Efficiency
In this paper, the enhancement of light extraction efficiency in III–nitride-based light-emitting diodes (LEDs) with an array of microstructures is demonstrated numerically and experimentally at the near-ultraviolet (n-UV) spectral region. Two different microstructures are adopted to study the mechanism, including the shallow etching of microstructures on the indium–tin-oxide (ITO) p-contact an...
متن کاملEnhancement of light extraction in GaN-based light-emitting diodes using rough beveled ZnO nanocone arrays.
A remarkable enhancement of light extraction efficiency in GaN-based blue light-emitting diodes (LEDs) with rough beveled ZnO nanocone arrays grown on the planar indium tin oxide (ITO) layer is reported. The light output power of LEDs with rough beveled ZnO nanocone arrays was increased by about 110% at 20 mA compared with conventional LEDs with planar ITO. The light extraction efficiency of Ga...
متن کاملImpact of Plasma Electron Flux on Plasma Damage‐Free Sputtering of Ultrathin Tin‐Doped Indium Oxide Contact Layer on p‐GaN for InGaN/GaN Light‐Emitting Diodes
The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changi...
متن کاملSubstrate-Free InGaN/GaN Nanowire Light-Emitting Diodes
We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core-shell nanowires were encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the membrane was manually peeled from the sapphire substrate, flipped upside down...
متن کاملImproved light extraction of InGaN/GaN blue LEDs by GaOOH NRAs using a thin ATO seed layer
We investigated the effect of gallium oxide hydroxide (GaOOH) nanorod arrays (NRAs) on the light extraction of InGaN/GaN multiple quantum well blue light-emitting diodes (LEDs). GaOOH NRAs were prepared on an indium tin oxide electrode (ITO) layer of LEDs by electrochemical deposition method. The GaOOH NRAs with preferred orientations were grown on the ITO surface by sputtering a thin antimony-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 23 شماره
صفحات -
تاریخ انتشار 2009